イットリウムフェライト磁気光学結晶の高速気相成長と磁化増大を報告 :: Enhanced magnetization of yttrium iron garnet epitaxially grown via CVD route (Mater. Lett., 2020)

相田穂乃香さん (M2) の研究成果が、Materials Letters 誌に受理されました。論文題目は、「High-speed Epitaxial Growth of Y3Fe5O12 Thick Film with High Magnetization on (420) Y3Al5O12 Substrate Using Metal-organic Chemical Vapor Deposition」です。本研究は、本学大学院工学研究院の綿貫竜太先生との共同研究です。

イットリウムフェライト系化合物は、物質の磁化に伴い旋光性や電気分極を発現する機能性材料群です。中でもY3Fe5O12 (YIG) は、大きなファラデー効果を示し、YIG中を透過する光の偏光面を回転させることができることから、レーザー光源を戻り光から保護する光アイソレータとして、レーザー加工や光通信システムで実用されます。

YIG crystal as faraday rotator used in optical isolators.

YIG結晶は、1960年代にハライドCVD法により初めて合成されました。現在の工業生産においては、液相エピタキシー (LPE: liquid phase epitaxy) 法が主流となっています。一方、YIG薄膜に関する基礎研究では、物理気相蒸着法 (PVD: physical vapor deposition; スパッタリング法やパルスレーザー蒸着法が用いられており、一部の研究グループから (111) Gd3Ga5O12 (GGG) 単結晶基板上に合成したYIG薄膜の飽和磁化増大が報告されていますが、飽和磁化増大の機序は明らかになっていません。

本研究課題では、MOCVD法によるYIG結晶の高速エピタキシャル成長の確立を目的としました。実験に先立ち、YIG結晶を (100) や (111) といった低指数面で高速成長させた場合、ガーネット構造は結晶学的に異方性が小さいことから、マルチドメイン成長によって高品質の結晶を得ることは困難であると推察しました。そこで、高指数面を持つ (420) Y3Al5O15 (YAG) 単結晶基板を下地基板として選択し、YIGの合成実験を行いました。

Graphical abstract for “High-speed epitaxial growth of yttrium iron garnet (YIG) with enhanced magnetization”

(420) YIG厚膜は、(420) YAG単結晶基板上にcube-on-cubeの関係でエピタキシャル成長し、成膜速度は毎時33 μmに達しました。YIG厚膜は5 μm程度の膜厚がありますが、焦げ茶色の透明体であることから、単結晶様成長したことが示唆されます。成膜速度は、PVD法の180~1600倍、ハライドCVD法の20倍でした。さらにSQUID磁束計を用いた磁化測定により、(420) YIG厚膜は軟磁性的な磁化挙動を示し、室温における飽和磁化は202 emu/ccに達することがわかりました。この値は、LPE法やPVD法により合成される単結晶や薄膜の値 (~143 emu/cc) を越えるものです。このような飽和磁化増大効果は、これまでGGG基板上に成長させたYIG薄膜にのみ起こると考えられてきましたが、本研究によりYAG基板上に成長させたYIG厚膜においても観察されることが明らかになりました。XPS測定により、YIG結晶中にFe2+イオンの共存が示唆され、これが飽和磁化増大に寄与していることが推察されます。今後は、YIG厚膜の化学量論組成や格子ゆがみが磁気的特性に与える影響を調べていきます。

尚、本研究成果の一部は、日本学術振興会科研費・基盤研究 (課題番号:17H03426, 18K03536, 20H05186および20H02477)、横浜工業会・令和元年度学術研究推進援助事業の支援を受けて得られたものです。


H. Aida, R. Watanuki, A. Ito, High-speed Epitaxial Growth of Y3Fe5O12 Thick Film with High Magnetization on (420) Y3Al5O12 Substrate Using Metal-organic Chemical Vapor Deposition, Materials Letters. https://doi.org/10.1016/j.matlet.2020.128228

ストロンチウムフェライト磁性体の気相合成に成功 :: First CVD of M-type strontium hexaferrite (Mater. Lett., 2020)

加藤起基君 (2020年3月修了) の研究成果が、Materials Letters 誌に受理されました。論文題目は、「High-speed Epitaxial Growth of M-type Strontium Hexaferrite Films on Sapphire using Metal-Organic Chemical Vapor Deposition and Their Magnetic Property」です。本研究は、本学大学院工学研究院の綿貫竜太先生との共同研究です。

デジタルデータ流通量の増加に伴い、大容量データを長期保管するために磁気記録媒体の記録密度や信頼性の向上が求められています。加藤君は、有機金属化学気相析出 (MOCVD) 法によるM型六方晶フェライト膜の合成プロセスを提案し、その最適合成条件や磁気特性を報告しました。サファイア基板上への高速エピタキシャル成長に成功し、成膜速度 (14 μm/h) は従来の液相法や物理気相成長法の25~1400倍に達する一方、合成したM型六方晶フェライト膜の飽和磁化 (380 emu/cc) は単結晶 (404 emu/cc) に匹敵する値に達しました。

Graphical abstract for “High-speed epitaxial growth of high-performacne M-type strontium hexaferrite (SrM)”

尚、本研究成果の一部は、日本学術振興会科研費・基盤研究 (課題番号:17H03426, 18K03536および20H02477)、横浜工業会・令和元年度学術研究推進援助事業の支援を受けて得られたものです。


K. Kato, R. Watanuki, A. Ito, High-speed Epitaxial Growth of M-type Strontium Hexaferrite Films on Sapphire using Metal-Organic Chemical Vapor Deposition and Their Magnetic Property, Materials Letters. https://doi.org/10.1016/j.matlet.2020.128046

ナノ柱状晶からなる透明多結晶厚膜の提案 :: Strontium titanate transparent thick film composed of close-packed nanocolumns (Vacuum, 2020)

Jianchao Chen氏、後藤 孝教授 (東北大学) との研究成果が、Vacuum 誌に受理されました。論文題目は、「High-speed epitaxial growth of SrTiO3 transparent thick films composed of close-packed nanocolumns using laser chemical vapor deposition」です。

単結晶バルク体や薄膜は、高い透光性を示しますが、平滑な表面からなることから比表面積は小さくなります。一方、多孔質体は、大きな比表面積を有しますが、光の散乱により一般的には不透明となります。もし高い透光性と比表面積を両立した材料を合成することができれば、新たな光触媒材料への応用が期待できます。

本研究では、レーザーCVD法を用いてMgAl2O4単結晶基板上にSrTiO3厚膜を高速エピタキシャル成長させました。SrTiO3厚膜は高い透光性を示し、SEM電顕観察においては緻密な構造が観察されていましたが、TEM電顕観察を通じて、この厚膜はナノサイズのSrTiO3柱状晶が密に集合した構造を持っていることを明らかにしました。

尚、本研究成果の一部は、日本学術振興会科研費・基盤研究 (B) (17H03426) 他の支援を受けて得られたものです。


J. Chen, A. Ito, T. Goto, High-speed epitaxial growth of SrTiO3 transparent thick films composed of close-packed nanocolumns using laser chemical vapor deposition, Vacuum. https://doi.org/10.1016/j.vacuum.2020.109424

透明厚膜蛍光体の高速気相成長法の確立 :: CVD route to transparent thick films of Eu-doped hafnia and lutetia for phosphors (Opt. Mater. Express, 2020)

松本昭源君 (M2) の研究成果が、米国光学学会 Optical Materials Express 誌に受理されました。論文題目は「Chemical Vapor Deposition Route to Transparent Thick Films of Eu3+-doped HfO2 and Lu2O3 for Luminescent Phosphors」です。本研究は、Open Access 論文として一般公開されます。

伊藤研究室では、セラミックス光学材料の製造プロセスとして高速化学気相析出法を研究しており、 溶解凝固法や焼結法を代替する合成ルートとして提案しています。一般に、セラミックス光学材料には、溶解凝固法により育成した単結晶セラミックスが広く用いられます。しかし、超高融点セラミックスでは、溶融に大きなエネルギーが必要となり、超高温融液の保持も簡単ではありません。近年、セラミックス粉末を焼結することで、単結晶に匹敵する透明多結晶セラミックスを製造する技術が注目されています。しかし、優れた透光性を引き出すためには、原料粉末の調整や予備処理のノウハウが決め手となります。また、温度変化によって可逆的相転移を示すセラミックス材料を合成する際、 溶解凝固法や焼結法では、相転移に伴う体積変化による結晶の割れが問題となります。

超高融点セラミックスの中でも、酸化ハフニウム (HfO2) や酸化ルテチウム (Lu2O3) は、ワイドバンドギャップ (5.8および5.5 eV)、高密度 (10.1および9.5 Mg m−3)、高有効原子番号 (67.3および67.4) を示し、シンチレーターやレーザー向けのホスト光学材料として注目されます。しかしながら、これらの材料は超高融点 (それぞれ3031および2763 K) であり、特にHfO2は、温度によって単斜晶⇔正方晶⇔立方晶の間で可逆的に相転移するため、溶融凝固法や焼結法では光学結晶を合成することが困難でした。

Graphical abstract for “CVD Route to Transparent Thick Films (CVD-TTF) for sheet-type scintillators and gain media in thin disc laser”
Graphical abstract for “CVD Route to Transparent Thick Films (CVD-TTF) for sheet-type scintillators and gain media in thin disc laser”

本研究では、レーザー加熱CVD法を用いて単斜晶HfO2および立方晶Lu2O3の透明厚膜の高速化学気相析出に成功しました。HfやLu原料ガスとともにEu原料ガスを同時供給することで、Eu3+イオンをHfO2およびLu2O3中に均一にドープすることが可能であり、紫外線照射下にてEu3+イオンの5D07FJ遷移に起因する顕著な赤色蛍光を示す透明蛍光体厚膜が得られました。蛍光発光および蛍光励起スペクトルは、VRBE (Vacuum Referred Binding Energy) スキームおよびDiekeダイアグラムとともに考察しました。Eu3+イオンは、配位子場環境によって5D07FJ遷移の発光強度比が異なることが知られており、蛍光スペクトルからもHfO2単斜晶相の気相成長を確認できます。本研究は、レーザー加熱CVD法がセラミックス光学結晶の迅速製造プロセスとして有効な合成ルートであることを示すものです。

Graphical abstract for “CVD Route to Transparent Thick Films (CVD-TTF) of Europium-doped Monoclinic Hafnia and Cubic Lutetia”
Graphical abstract for “CVD Route to Transparent Thick Films (CVD-TTF) of Europium-doped Monoclinic Hafnia and Cubic Lutetia”

伊藤暁彦研究室では引き続き、ハフニウム系やルテチウム系酸化物を中心に、光学材料として期待される超高融点材料、難焼結材料、非平衡相材料の高速化学気相析出に関する研究を進める一方、共同研究を通じてその機械的特性や光学的特性を明らかにしていきます。

尚、本研究成果の一部は、日本学術振興会科研費・基盤研究 (17H03426、17H01319および18H01887)、横浜工業会・令和元年度学術研究推進援助事業の支援を受けて得られたものです。


S. Matsumoto, A. Ito, Chemical Vapor Deposition Route to Transparent Thick Films of Europium-doped Hafnia and Lutetia for Luminescent Phosphor, Optical Materials Express. https://doi.org/10.1364/OME.386425

Link to ScienceDirect Topics: hafnium, lutetium, luminescence, luminescent-material

レーザーを援用した化学気相析出法によるセラミックスの自己配向成長 :: Self-oriented growth of engineering and functional ceramics using CVD (CERAMICS JAPAN, 2020)

本学への赴任後、学生と一緒に設計・製作した合成装置を用いて、2018年~2019年に得た研究成果の一部を、セラミックス誌に解説記事としてまとめました。題目は、「レーザーを援用した化学気相析出法によるセラミックスの自己配向成長」です。2020年2月号の特集「レーザーテクノロジーとセラミックス」に掲載されます。

「理想的な立方晶系からわずかに歪んだだけの単斜晶系や三斜晶系のセラミックス材料においても、各結晶面方位への選択的自己配向成長は実現できるのか?」「単結晶様成長を維持したまま、エピタキシャル成長はどこまで高速化できるのか?」といった研究課題に取り組んだ研究成果を紹介しています。

自己配向成長技術の事例として、超高融点酸化物構造材料 酸化ハフニウム、クロミック材料 酸化タングステン、地殻鉱物 マグネシウムシリケートの研究成果を紹介しています。また、 高速エピタキシャル成長技術を、融液からの結晶成長が難しい超高融点酸化物や不一致溶融化合物の結晶成長に適用した事例として、 単斜晶ハフニウム蛍光体やイットリウムフェライトガーネット磁気光学結晶の単結晶様成長に関する研究成果を紹介しています。

自己配向成長は、下地基板を選ばずに結晶配向成長を実現できることから、例えば切削工具やガスタービンブレードなど、過酷な環境で運用される基材を保護するコーティングとして幅広く適用できます。耐環境性コーティングの競合技術としては、溶射法や電子ビーム物理気相蒸着法がありますが、組織制御性や高融点材料対応の点で、 化学気相析出法 に分があります。伊藤研究室では、二の矢三の矢を仕込み中であり、 世界トップレベルの革新的セラミックスコーティングの創出を目指します。

高速エピタキシャル成長は、一般的なエピタキシャル成長の十~百倍程度の結晶成長速度を実現できます。気相法では、融点の半分以下の温度で単結晶成長が可能であり、これまで溶融法では合成が困難であった超高融点酸化物、可逆的相転移化合物、不一致溶融化合物や準安定相化合物をも含むセラミックス材料の単結晶成長プロセスとして利用できます。将来的には、マテリアルズインフォマティクスやサイバーフィジカルシステムと連携した機能性結晶のラピッドプロトタイピングおよび未踏材料探索の場として、本技術を発展させていくことを目指しています。

尚、SiC/SiC-CMC向け繊維コーティング技術に関する解説記事、セラミックス一般に関する書籍記事、セラミックスコーティングに関する書籍記事について、今春入稿予定で執筆中です。