繊維強化複合材向け次世代界面制御コーティングの研究開発成果 :: Development of novel CVD-interphase coatings for SiC-CMC (CERAMICS JAPAN, 2020)

SIP-SM4I プロジェクトで取り組んできた研究成果の一部を、セラミックス誌に解説記事としてまとめました。題目は、「SiC繊維表面への界面制御コーティング技術と力学特性評価」であり、2020年6月号の特集「航空機産業向け先端セラミックス」に掲載されます。宇宙航空研究開発機構 (JAXA) の後藤健先生との共著記事です。本記事には、原朋弘君 (2018年度修了) の研究成果が含まれます。

戦略的イノベーション創造プログラム (SIP: Strategic Innovation Program) 「革新的構造材料 (SM4I: Structural Materials for Innovation」では、「強く、軽く、熱に耐える材料を航空機へ」をモットーに、研究開発が推進されてきました。SiC繊維強化SiCセラミックス複合材料 (SiC-CMC) は、現用の耐熱合金を代替し、タービンブレードの軽量化と耐熱性向上に貢献する材料です。民間機エンジンの高温部材の一部に採用がはじまっていますが、長期運用の安全性を担保し、部材の適用範囲を拡げるためには、SiC繊維とSiCマトリックスの界面に存在する界面コーテイングがカギとなりますが、現行のBNを代替しうる繊維コーティングは未だ開発されていません。

Graphical abstract for “Development of novel CVD-interphase coatings with Yb silicates and SiC for SiC-CMC”. Left and center figures have been adopted from N.P. Padture, Nat. Mater., 15, 804–809 (2016), and National Research Council, “Ceramic Fibers and Coatings: Advanced Materials for the Twenty-First Century” The National Academies Press, Washington, DC (1998), respectively.

伊藤研究室では、連携機関 (JAXA, JFCC, IHI) とともに、化学気相析出 (CVD) 法を用いたYbシリケート界面制御コーティングを開発しました。開発コーティングは、SiC-CMCに必要な損傷許容性を発現し、ベンチマークとして用いたBN繊維コーティングと同等の破壊制御機能を持つことや、最表面に施したβ-SiC 保護層がマトリックス形成時に接する溶融Siに対して良好な耐性を示すことを実験的に示しました。一連の研究開発成果は、大面積施工プロセスへとスケールアウトしており、熱CVI 炉で製造したSiC-CMC基板の高温曝露試験によって、界面制御コーティングの可能性が確認されつつあることから、今後のSiC-CMC部材への実用化展開が期待されます。

CVD法を用いて繊維束へ界面コーティングを施し、ミニコンポジット化して機械的特性を評価することで、コーティング開発プロセスを大幅に迅速化することが出来ます。伊藤研究室では引き続き、この高速開発サイクルを活用した繊維強化セラミックス複合材料の信頼性向上に向けたコーティング技術および材料探索を行っていきます。

希土類シリケート系耐環境コーティングのCVD合成に成功 :: First CVD of ytterbium silicates for environmental barrier coatings (Ceram. Int., 2020)

SIP-SM4I プロジェクトで取り組んできた研究成果の一部が、Ceramics International 誌に受理されました。原朋弘君 (2018年度修了) の研究成果が含まれます。論文題目は、「Self-oriented growth of β-Yb2Si2O7 and X1/X2-Yb2SiO5 coatings using laser chemical vapor deposition」です。

戦略的イノベーション創造プログラム (SIP: Strategic Innovation Program) 「革新的構造材料 (SM4I: Structural Materials for Innovation」では、「強く、軽く、熱に耐える材料を航空機へ」をモットーに、研究開発が推進されてきました。SiC繊維強化SiCセラミックス複合材料 (SiC/SiC-CMC) は、現用の耐熱合金を代替し、タービンブレードの軽量化と耐熱性向上に貢献する材料です。民間機エンジンの高温部材の一部に採用がはじまっていますが、今後さらに適用範囲を拡げていくためには、部材を高温の酸素・水蒸気雰囲気から保護する耐環境コーティング (EBC: Environmental Barrier Coating) の開発が必須です。

A schematic of turbofan engine for airplanes
A schematic of a turbofan engine for airplanes. “3D Printable Jet Engine” modeled by CATIAV5FTW licensed under CC-BY-NC 4.0.

Ybシリケート (Yb2Si2O7およびYb2SiO5) は、高温水蒸気雰囲気下での耐減肉性に優れることから、EBC材料として期待されます。 化学気相析出 (CVD: Chemical Vapor Deposition) 法は、原料ガスの基材上での析出反応を利用したコーティング手法であり、複雑形状物を比較的高速に被覆できる特長があります。しかし、シリケート化合物はガラス相が生成しやすく、これまでCVD法を用いて結晶質のYbシリケートを得ることは困難でした。

本論文では、熱CVD法とレーザー加熱CVD法を用いてYbシリケート膜を合成し、それぞれのCVDプロセスにおいて、成膜温度がYbシリケート膜の生成相や結晶配向、微細組織に与える影響を明らかにしました。 Ybシリケートが自発的に結晶方位を揃えて気相成長する自己配向成長効果 (self-oriented growth) を見出し、各結晶相の自己配向成長効果を結晶学の観点から整理しました。さらに、熱処理試験による各被膜の微細構造の変化を調べました。

Graphical abstract for "Self-oriented growth of ytterbium silicates via chemical vapor deposition"
Graphical abstract for “Self-oriented growth of ytterbium silicates via chemical vapor deposition

伊藤暁彦研究室では引き続き、CVD法を用いた繊維強化セラミックス複合材料の信頼性向上に向けたコーティング技術および材料探索を行っていきます。

本研究成果は、内閣府総合科学技術・イノベーション会議 戦略的イノベーション創造プログラム「革新的構造材料」『耐環境セラミックスコーティングの構造最適化及び信頼性向上 』 (管理法人: JST) の支援を受けて得られたものです。 本研究成果の一部は、日本学術振興会 科研費・基盤研究 (B) (17H03426) の支援を受けて得られたものです。

A. Ito, M. Sekiyama, T. Hara, T. Goto, Self-oriented growth of β-Yb2Si2O7 and X1/X2-Yb2SiO5 coatings using laser chemical vapor deposition, Ceramics International. http://doi.org/10.1016/j.ceramint.2019.12.217.

Link to ScienceDirect topics: silicate